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1. Introduction

1.1. Background

In the course of vulnerability modeling or any other computer simulation activity, the need
arises to quantify certain aspects of the behavior of the model itself as an autonomous system,
This is distinct from use of the model as a predictive or analytic tool, in that the simulation mod-
el itself is now the subject of study. In the words of Iman! et. «l.:

“... it is important to have efficient techniques to ex..nine and assess the influence of
madel input on model output. That is, it is important to be uble to perform sensitivity
analyses on the relationship between information supplied to the model and predic-
tions made by the model. The benefits of such analyses include the following: 1) an in-
dication wiether the model operates as intended, 2) identification of unimportant vari-
ables or unnecessary model complexity, and 3) an assessment of relative input variable
importance for gridance in data collection.”

A directive to analyze the behavior of the compartment model? for the purpose of determining
the relative importance of its input variables had led to the application of methodology pres-
ented in this report. The techniques presented herein are applicable to the sensitivity analysis
of computer simulations in general, and consideration should be given to their incorporation
mto such analyses.

1.2, The Basic Problem

Conceptually, the vector input x and scalar output y of a simulation model are functionally re-
lated by y = F(x)where the function is unknown. Of interest is the local sensitivity of the mod-
el (i.e., the relationship between changes in x and changes in y when xis centered about a single
fixed operating point with input x, and output y, = F(x,)).

The local Taylor series representation of F at x,, is
F(x) = F(xo) + L F(x,)'Ax + Ax' 92 F(x,)Ax + I
0 dx 0 de )

where Ax = x — x, isthe lucremental change in x about the operating point. Vectors are col-
umns, and throughout this presentation A' denotes the transpose of A. Truncating the Taylor
series to first order, we obtain the approximation

F(x) = F(xy) + a%l”(xo)‘Ax 2]
or

Ay = b'Ax (3]




where
Ay =y =y, = F(x) = F(x,) (4]

is the incremental change in y about the operating point y, and the derivative veetor
b = (—%‘-F(x(,) relates Ay to Ax. The components of b thus quantify the sensitivity of the model
to changes in input and allow us to answer questions about the relative importance of the vari-
ous input dimensions,

Let us suppose now that we have a number of observations (Ax;, Ay,), each representing a
slight variation in the model input and output about the operating point. We may construct a
vector Y with component Y, equal to Ay, and a matrix X with row i equal to Ax;. Noting that

b'Ax; = Axib, the collection of equations [3] may be written succinctly as
Y =Xb 5]

which expresses the problem of estimating b in the language of linear regression.

1.3. Design Considerations

The problem here is to estimate the tangent plane of a multidimensional surface at a single
point. We assume that the true response is a “nice” function (i.e., differentiable, smooth, con-
tinuous, etc.), so that the response is locally linear, given small enough variation in the input.
We assume here that the analyst has control over the design of this experiment. These ques-
tions arise:

« What is the operating point?

How many observations are needed?

What kinds of variation in the input nced to be cousidered?

What is the best way to specify the design matrix X?

For example, suppose that the input space has dimension two and that we are interested inthe
effect of £ 10% variation in the input values. Using £ 2% increments on the variables gives
asetof 11 values for each input dimension, namely, { -10%, -8%, -6%, -4%%, -2%, 0%, 2%, 4%,
6%, 8%, 10% }. Call this sct of values 8. Constructing all possible pairs of the values gives a
total of 112 = 121 points. The design is the product set § x S, and a design point is a pair of
numbers x=(x,, X;). The design matrix X has 121 rows, each consisting of a distinct pair x from
S x 8. In two dimensions, we can graph the design:
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Figure 1, Full-Grid Design

This scheme exercises all possible combinations of the inputs and thus provides good coverage
of the input space at the expense of a large number of design points. Note, that in five dimen-
sions, this design requires 11° = 161051 poims.

An alternative is to vary only one dimension of x at a time, leaving the others fixed at the oper-
aiing point. With the same set of values § as above, the number of puints required here is
1+ 10p, where p is the dimension of x . Here we gain information only along the x coordinate
axes and notin the oft-axis regions. Predictions derived from such a model will, in gencral, only
be validwhen one of the quantities varies + 10% and the other is fixed at zero. Such adesign is
unacceptable if one wishes to make predictions based on both quantities having a variation in
the £ 10% range simultaneously.
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Figure 2. Axis-Only Design

A design which provides complete coverage of the input space and also offers control over the
number of points is more useful than the full-grid and axis-only alternatives. The Latin Hyper-
cube Sampling (LHS) design? has these desirable characteristics. Consider pairing two ran-
dom permutations of the base set 8 to generate a design with 11 points. This procedure is the
basis of LHS.

Table 1. LHS with 11 Points in 2 Dimensions

X) X2 X3 X4 X3 Xy X7 X3 Xy X Xn
X4 2 0 -6 4 -2 11) 8 -8 -10 6 -4
X2 -8 6 -10 -2 () 2 -€ -4 4 10 8
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Figure 3. LHS with 11

Points in 2 Dimensions
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2. The Latin Hypercube Sample

In full generality, the Latin Hypercube Sample allows free choice of the number of design
points (henceforth denoted by n), the dimension of the input space (p), the murginal
probability distribution of each of the p input variables, and the correlation structure of the
input space.

2.1, Definition
A p-dimensional Latin Hypercube Sample of size nis formed as follows:*

Divide the range of each variable into n bins based on equal width or equal probability.
For each variable, select a point at random from each bin, Then randomly order the
points for each variable and combine them to form p-tuples. The resulting collection of
n vectors, each of length p, is a Latin Hypercube Sample.

We begin by examining the simplest case and proceed to develop generality by presenting
examples of the more involved constructions.

2.2, Discrete Uniform Distribution

The simplest case is a onc-dimensional (1-D) LHS of size n drawn from the discrete unitorm
distribution. Without loss of generality, we can take the allowable variable values to be the set
N={01,2,.,n-1}. The LHSis thena random permutation of N. For example, withn= [0 we
have:

Table 2. Discrete, Uniform, 1.1) LHS

X) Xa Xa X4 Xs Xe X7 X Xy X0
X 7 0 2 A ) | 8 Q s 4

Independent 1-D samples are combined to form higher-dimensional samples:

Table 3. Discrete, Uniform, 2-D LHS

Xy X; X3 X4 Xs X6 X7 Xx Xy Xie
X 7 0 2 3 6 1 8 9 ht 4
X 2 () 1 9 3 7 5 4 8 6

Inthe LHS, there is no connection between the number of sample points and the dimension of
the input space, in contrast with the previously considered designs.

2.3, Continuous Uniform Distribution
Now we consider a sample with uniform distribution on the unit interval, U(0,1). Construction
of this sample is based on the discrete sample of the previous section. Forp=1, the 1-D case, an
LHS of size n is constructed as follows:




a. Generate a random permutation of the set N = { 0, 1,2, .., n-1 }.
b. Add a U(0,]1) random quantity to each element of N.
c. Divide by n to scalc the sample into the interval (0,1).

For example, with n= 10, we have the results in Table 4.

Table 4, Development of Continuous, Uniform, 1-D LHS

step X A X\ L% Xe X, X . 1 N
. 7 Q0 2 3 6 1 8 9 5 4
b. 7.690 0526 2364 3.884 6558 1731 B.667 9.654 5816 4272
e 0.769 0053 0236 0388 0.656 0173 0867 0965 0582 0427

Note that we effectively divide the allowable variable range (0,1) into n equiprobable bins
(0,0.1), (0.1,0,2), ..., (0.9,1); order the bins randomly; and then select a point from each bin,
again with equal probability,

A 2-D LHS is formed by generating independent 1-D samples for each variable. Adding
another dimension to the previous example gives the results in Table 5.

Table 5. Continuous, Uniform, 2-D LHS

X X2 Xa X4 X5 Xa X7 Xg X9 X
X 0769 0.053 0230 0388 0.6560 0173 0867 0965 0.582 0427
X; 10215 0.041  0.115 0920 0362 0746 0560 0483 (868  (.609

Higher-dimensional samples are formed by generating independent samples in each
dimension.

2.4. Arbitrary Distributions

The LHS examples generated previously have the U(0,1) uniform distribution in cach
dimension.  Transformation to other continuous distributions can be  accomplished
independently in each dimension by applying the appropriate inverse probability integral
transform (inverse cumulative distribution function). The argument is reproduced here:

Let the random variable U have the uniform distribution on the unit interval. The
cumulative distribution function (cdf) of U is Prob{U < t} = tfor 0 st = 1. We
wish to transform U into a random quantity X with a specified cdf F(x). So take
X = F'Y(U). Then Prob{X = x} = Prob{F-!(U) s x} = Prob{U s Fx)} = F(x)
as desired.

2.5. Orthogonal Design in Linear Regression
The design matrix X in a linear regression problem (equation [5]) is said to be orthogonal if the
product X'X is a diagonal matrix. The variables (columns) of such a design arc then




uncorrelated. In the statistical literature, the term multicollinearity refers to a departure from
orthogonality. On onc hand, orthogonality is an absolute. Either a matrix is orthogonal or it
isn’t. In contrast, use of the word mudticollinearity is intended to suggest some degree of lincar
dependence among a set of vectors. Thus, multicollinearity is subject to quantification and
comparison. Common measurcs of multicollinearity include variance inflation factors, the
determinant, various types of matrix metrics, and various definitions of the condition number.
Further discussion of multicollinearity is deferred to section 2.7, where several ol these
measures are defined and used.

One of the computational benefits of un orthogonal design is that calculation of the parameter
estimate for one of the variables involves only that particular column of the design matrix
(along with the dependent variable), so variables can be added or deleted form the design
scheme without recalculating all estimates. Likewise, a single column can be changed and the
corresponding parameter can be re-cstimated independently of the others. A second
advantage of the orthogonal design is the optimal variance property, which essentially states
that parameter estimates have minimum variance when the design is orthogonal.’ Practically
speaking, this corresponds to reduced error estimates.

2.6, Correlation and Correlation Conditioning

The rank correlation of any continuous LHS, whether it be drawn from the uniform
distribution or an arbitrary distribution, is identically equal to the rank correlation of the
underlying discrete uniform LHS from which the sample was obtained. So, all inquiries
concerning the rank correlation of an LHS can be addressed by considering the discrete
uniform case.

Ideally, the variables (i.¢., columns) of an LHS should be uncorrelated, as they were generated
independently. In practice, of course, these vectors exhibit nonzero correlation. For example,
here is an integer LHS with 10 observations and S variables:

8 408 7 17
455 3 2
51010 & 8
17 91009
6 2 7 4 7
X= 199 1 50 [6]
2161 6
03 3 25
36209 4
_784()3‘

To an accuracy of two decimal places, this sample has rank correlation;




1.00 0.07 -0.39 -0.30 -0.13
1.00 -0.01 0.64 0.33
ox = | - . L00 031 0.08], 17)
. 100 0.15
1.00

The ideal correlation structure of such a sample should be the identity matrix I (i.c., distinct
variables should be uncorrelated). In the 1-D case, we divide each element by the standard
deviution (square root of the variance) of the sample 1o seale the saumple varianee to unity.
Analogous procedures can be used in higher dimensions to produce uncorrelated vectors.®
One way of accomplishiny this “decoupling” in the multidimensional case is presented here.

Let § be the sample variance-covariance matrix of X. The diagonal elements of S are the
sample variances of the input vectors, and the off-diagonal clements are the sample
covariances. Let T'T be the Cholesky decomposition’ of 8. Then T is upper-triangular and
T'T=8. Let Q =T"! and consider the quantity XQ. Applying standard identitics®
concerning the variance of multivariate random quantitics, we have

var(XQ) = Q' - var(X) - Q

=Q 5:Q

=Q TT:-Q

(TQ)'TQ

I'l

=1 [¥]

|

i

it

so the product XQ has unit variance. We have “divided™ X by the "square root” of its variance to
produce an object with the required variance I The resulting correlation structure will also be
L. In this case,

9.167 0.611 -3.611 -2.722 -1.167
0.611 9.167 -0.056 5.833 3.056
-3.611 -0.056 9.167 2.833 0.722
-2.722 5.833 2.833 9.167 1.38Y
-1.167 3.056 0.722 1.389 9.167

7
It
=
-
]

: 19]

3.028 0.202 -1.193 -0.899 -(.385
0 3.021 0061 1991 1.037
T = 0 0 2782 0.589 0072}, [10]
0 0 0 2012 -0.529
0 0 0 0 2767




0.330 -0.022 0.142 0.128 0.075
0 0331 -0.007 -0.325 -0.186
Q=T"=| 0 0 035 -0.105 -0.029[ [11]
0 0 0 0497 0095
0O 0 0 0 036l

and

[2.642 1.148 3.943 2.359 (.647]
1.321 1.567 2.329 -0.151 0.230
L.oS1 3.200 4.232 (.309 1.871
0.330 2,295 3.320 1.873 2.710
XQ = 1,982 0.530 3.354 1.368 2.782

2,973 2,781 1.573 0.601 3.060(
0.661 0.287 2.433 -0.204 2.051
3.303 0.772 2.477 0981 2.101
0.991 1.920 1.101 2.694 1.351
[2.312 2,494 2.374 0.853 0.573]

112]

Now let each column of the matrix Y contain the ranks of the data in the corresponding column
of XQ. Transforming data 1o ranks changes variance but not rank correlation. This operation
yields an integer matrix, each column of which can be viewed as a permutation of the
corresponding column of the original matrix X. The result is:

8 4 09y 3]
45 3 2 |
510103 5
[ 7 7 8 8
6 2 8 7 9
Y= 19 9 2 4 10 [13]
21 5 1 6
103 6 6 7
6 1 10 4
78 4 § 9

which now has rank correlation

1.00 0.07 0.07 0.07 -0.13
1.00 -0.09 -0.02 -0.05
oy = | - . LO00.07 012, [14]
. 100 0.08
1.00

Compare this with the rank correlation of the original sample X (equation [7]) . The effect of -

such a transformation is not entirely obvious, as most observers are not ablc to visualize

10




higher-dimensional objects. Certainly some of the offensive correlations have decreased, but
several of the off-diagonal elements of the correlation structure have increased in magnitude.
lowever, there are a number of ways to measure multicollinearity in the sample.

2.7. Measures of Performance
Perhaps the most common sealar measures of multicollinearity assictated with a design matrix
are the condition number and determinant measure.

The cigenvaluesy; of the ideal correlation structure are all equal to 1. The determinant of a
matrix is the product of its eigenvalues. Hence, the determinant 8 of the ideal structure is also
equal to 1. A condition number x may be defined at the ratio of largest to smallest eigznvalues
M/ A This quantity w-i' {i- vbe 1in the ideal case, Finally, we may consider the L2 norm ¢ (also
called the Euclidean ..+ or root meau square distance) between the sample's correlation
structure and the ideal identity matrix. This quantity should be zero. Refer to the first two lines
of Thble 6 for measures associated with the samples X and Y.

By all indications, this procedure has imp-oved (decreased) the correlation of the sample.
Note that the product XQ indeed has exact unit correlation and that the final step of replacing
columns of XQ by column ranks again disturbs the correlation structure. It is natural to
consider {terative application of the procedure in hopes of obtaining a “limiting” sample with
the “most ideal” correlation under the constraint >f replacing columns with column rianks. We
can repeat the procedurc and generate a sample Y4 from Y in the same manner that Y was
generated from X, The details are not reproduced here, but another application of the
procedure permutes four elements in last column, and the result is

[

= un o
= T

=
oD 2

[15]

o U B LN N RN,
N = <Xty

o]
N

o— N AR OC N
£a

)
¢ N W e—

ﬁ

-d ”
N
(%)
L

The resulting correlation structure is

1.00 0.07 0.07 0.07 0.02
. 100 -0.09 -0.02 -0.03
oy, . . L0O0 007 0.04 ] [106]
. 1.00 -0.03
1.00

]
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The associated measures of multicollinearity are presented in Table 6.

Table 6. Measures of Multicollinearity

sample A A> A3 A As % O v
X 1.960) 1.335 (.874 0.601 (1224 ®751 0.310 LR8I0
Y 1.278 1077 0.943 0877 0.828 1.541 0.940 0.130
Y. 1147 |.ORS 1.015 0.905 1).844 13580 0.970 t.ol
ideal ! | I ] 1 1 | ]

For this particular sample, the process has ierminated. Another application does not change
the sample.

2.8, The General Effect of Correlation Conditioning

We can demonstrate the effect of corrclation correction by considering this simulation:

o Generate 1,000 LH samples, each with 100 observations in § variables,
with no correlation correction,

o Generate 1,000 LH samples, each with 100 observations in 5 variables,
with a single step of correlation correction.

o Generate 1,000 LH samples, each with 100 observations in 5 variables,
with completed correlation correction,

« Compate and compare the cumulative probability distributions of
«, the condition numbers,
8. the determinants of the empirical correlation strictures g, and
e, the L2 norms |¢-1],
for cach of the three sets of samples.

Figures 4 through 6 depict the empirical distributions ot », 8, and €. Neither the single example
nor the simulation provides proof of the effectiveness of the correlation correction procedure,
but the indication is that single correction substantially improves the behavior of the sample,
and that completed correction further improves the behavior of the sample.

Table 7 details results from the simulation in the form of empirical quantiles (q) for cach
measure of multicollinearity (x. 6, and ) at each level of correlation correction (none, singie,
and complete). Such tabulations facilitate quantitative observations about the distributions
under study. For example:

Note that 999 of %, lies above 1,349, whereas 99% of %, lies below 1,127, Thisis
complete separation of distributions, for all practical purposes. Also, 85% of#«,
lies above 1,046, whereas 9% of ., lies below 1.046. Empirically, this indicates a

12




probability of (.85 that the condition number of an LHS with single correlation
correction exceeds 1,046, and a probability of 0.01 that the condition number o1 un
LHS with completed correlation correction does not exceed 1,046, This may be un
important difference in pructical applications.

Cumulative Probabillty

K.
1.0 -
'/
/ ’
0.8 - _‘.*"
"I. ’
0.6 ,,"
I(’
0.4 - ,{' ®o
0.2 - ot
I
e o S 'l . 1
1.0 12 1.4 1.6 18 2.0

Candition Numbers

Figure 4. Condition Numbers
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Table 7. Quantiles of Performance Measures

q || Condition Number (%) Determinant (d) L Norm (¢)

LA Xy Koo 8o ol Ocs o € t,.
P r—

1% .1.34() 1033 | 1025 [[0.7913 [ 0.9956 [ 0,9994 || 0.011 | 0.001 |0.000

5% | 1.435 | 1.040 | 1.028 | 0.8369 [ 0.9971 [ 0.9994 || 0.048 [ 0,004 | 0.002

0% || 1.489 | 1.043 | 1.029 [ 0.8523 { 0.9977 [ 0.9995 [ 0.086 | (LOOY | 0.008

150 | 1.531 | 1.046 | 1031 || 08637 {0.9979 ; 0.9995 [ 0.122 | 0.013 | 0.007

2000 ff 1.563 | L1049 | 1031 [0.8713 ;09982 10,9995 || 0.158 | 0.O17 | 0.010

25% (| 1.601 | 1051 | 1.032 [ 0.8784 | ,9983 | 0.9995 || 0.205 | 0.022 | 0.012

30% || 1.630 | 1.053 | 1.033 j 0.8851 | 0.9985 | 0.9996 || 0.247 | 0.026 | 0.014

35% || 1.658 | 1.056 | 1.034 §0.8927 | 0.9986 | 0.9996 || 0.284 | 0.030 | 0.017

40% (| 1.687 | 1.058 | 1.034 | 0.8981 ] 0.9987 | 0.9996 [ 0.330 [ 0.036 {0.021

45% || 1.710 | 1060 | 1035 | 0.9039 | 0.9987 | 0.9996 | 0.370 | 0.042 | 0.023

50% {| 1.739 | 1.063 | 1.036 | 0.9092 | 0.9988 | 0.9996 |l 0.427 | 0.047 [ 0.025

55% || 1.766 | 1065 | 1.036 | 0.9139 | 0.9989 [ 0.9996 | 0.473 [ 0.052 [0.029

60% |f 1.801 [ 1.069 | 1.037 | 0.9190 | 0.9990 | 0.9996 || 0.545 | 0.059 |0.032

65% || 1.836 | 1.071 | 1.037 [ 0.9231]0.9991 | 0.9996 [| 0.597 | 0.064 |0.036

70% || 1.866 | 1.074 | 1,038 } 0.9286 | 0.9991 | (0.9997 || 0.657 [ 0.070 [ 0.041

75% || 1.909 | 1077 | 1.039 | 0.9335]0.9992 | 0.9997 | 0.721 | 0.078 |0.045

80% || 1.956 | 1080 | 1.040 | 0.9384 | 0.9993 | 0.9997 {| 0.801 | 0.087 [0.050

85% || 2.014 | 1.087 | 1.041 [ 0.9437 |0.9994 | 0.9997 | 0.891 | 0.099 |0.056

90% || 2.084 | 1.094 | 1.042 109511 [0.9994 | 0.9997 | 0.992 | 0.115 [0.062

05% || 2.183 | 1.103 | 1.044 [ 0.9590 | 0.9995 | 0.9998 [ 1.178 } 0.141 |0.072

Q9% (| 2.445 | 1127 | 1.O46 [ 0.9745 1 0.9997 | 0,9998 | 1.640 | 0.196 | 0.1

key 0 no correlation correction
I : single correlation correction
o : completed correlation correction
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2.9. Inducing Correlation in the Sample
We can modify the procedure outlined insection 2.6 to induce a desired correlationin the Latin
Hypercube Sample.

Again, we begin with an integer LHS X having sample variance-covariance matrix §. As
before, T'T is the Cholesky decomposition of §,and Q = T~ !. Now suppose that the desired
correlation structure of the sample is C. Let R'R be the Cholesky decomposition of C, and
consider the product XQR.

var(XQR) = (QR)’ * var(X) * QR
= R'Q': S+ QR
= R'Q' ' T'T QR
=R (TQTQ R
=R Il R
= R'R
= C, [17]

Now XOQR has variance (and hence carrelation) exactly equal to €. Let each column of the
matrix Y contain the ranks of the data in the corresponding column of XQR. Continue as
before, treating Y as the new sample and iterating the procedure. The benefits observed in the
unit-correlation case (section 2.8) carry through to the arbitrary-correlation case.
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3. Some Uses of the Latin Hypercube Sample

3.1. Local Sensitivity Analysis: Single Operating Point

The most basic use of LHS is to model small variation in input around a single operating point
using an uncorrelated uniform sample. This is described in detail in the Introduction of this
report and illustrated in Figure 3.

3.2, Local Sensitivity Analysis: Multiple Operating Points

Suppose now that we are interested in the local sensitivity of our model ata number of operat-
ing points. For the sake of illustration, take p=2. Consider three operating points, say,
X1 = (1,2),x, = (2,1),and x; = (4,3). Weimpose = 10% variation on the inputs and gener-
ate 25 perturbations of each operating point. Initial operating points are indicated by “+" and
LHS points by “.” in Figure 7.

Figure 7. Multiple Local Operating Points
3.3. Global Sensitivity Analysis

We may desire to “connect” the space between operating points and develop a global model of
the simulation under study. In this case, it may be appropriate to induce a particular correla-

18
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tion in the LHS to provide sampling in desirable regions. Refer to Figure 8. Initial operating
points are indicated by “+" and LHS points by “.". Suppose we choose to regard the points
(1,5) and (5,1) as infeasible and the points (1,1) and (5,5) as realistic extensions of the operat-
ing space. The sample in Figure 8 was generated with a correlation of 0.7 between dimensions,
and it apparently conforms to this notion of feasibility. The uniform distribution was used
here, but other distributions may be appropriate depending on the application. Note that
changing marginal distributions through use of the inverse probability integral transtorm does
not change the rank correlation of the sample, as the mapping is monotonic increasing,

Figure 8. Global Analysis
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4. Conclusions and Recommendations

The Latin Hypercube Sample is appropriately used to generate input for simulation model
sensitivity analyses.® Consider the linear regression problem (equation [5]) developed in the
introduction of this report. It is well known !0 that the variance of the parameter estimate in-
creases as the correlation of the input variables increases, the ideal (minimum variance) casce
being that of uncorrelated inputs. Various ways of quantifying multicollinearity, or departure
from orthogonality, have been suggested. These including the condition number and determi-
nant measures. Statisticians agree that a design with minimal correlation among the input vari-
ables is desirable. However, as Stuart and Ord!! point out, the word sinimal in this context
does not have a unique interpretation:

Stewart ... presents several indices for assessing multicollinearity; the ensuing discus-
sion indicates the lively debate that persists.

Correlation correction in Latin Hypercube Sampling reduces popular measures of multicolli-
nearity. This increases the efficicncy of subsequent statistical procedures. Therefore, the
correction should be applied when efficiency is an issue.

The effects of higher correlation are amplified when dimensionality of the sample is high and
the number of points in the sample (cardinality of the sample) is low. Schemes which use a
large number of high-dimensional, low-cardinality samples may particularly benefit from
completed correlation correction.
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